关键词:
肝细胞癌
磷脂酰基醇蛋白聚糖3
放射组学
机器学习
摘要:
目的开发一种基于瘤内和瘤周区域的计算机断层扫描放射组学特征联合临床因素的机器学习模型术前预测肝细胞癌(HCC)磷脂酰基醇蛋白聚糖3(GPC3)的表达。方法回顾性分析自2017年1月至2024年6月北部战区总医院肝胆外科收治的接受根治性手术的165例HCC患者的临床资料,按照7∶3比例将其随机分为训练集(n=114)与验证集(n=51)。使用Python软件分别提取瘤内和瘤周3 mm区域的放射组学特征,通过组内相关系数、t检验、皮尔逊相关系数、最小绝对收缩和选择算子回归法选择与HCC的GPC3表达相关的放射组学特征。采用逻辑回归算法构建瘤内、瘤周和融合模型,比较和选择最佳模型。为进一步提升模型的预测能力,使用最佳模型放射组学标签和经单因素和多因素Logistic回归筛选的临床风险因素构建联合模型,并绘制列线图。采用受试者工作特征曲线(ROC)和校准曲线来评估各模型的预测性能,用决策曲线来评估临床效益。结果165例HCC患者中,83例患者病理诊断为GPC3阳性设为GPC3阳性组,82例患者病理诊断为GPC3阴性设为GPC3阴性组。GPC3阳性组的甲胎蛋白(AFP)水平及乙肝病毒感染比例均高于GPC3阴性组,肝硬化比例低于GPC3阴性组,差异均有统计学意义(P<0.05)。训练集和验证集临床特征资料比较,差异均无统计学意义(P>0.05)。在训练集和验证集中,联合融合模型放射组学标签和AFP水平的临床-放射组学模型预测性能最高(曲线下面积分别为0.876、0.815)。校准曲线的霍斯默-莱梅肖拟合优度检验显示P>0.05(训练集:P=0.286、0.808、0.647;验证集:P=0.127、0.169、0.370),表明各模型的预测和实际GPC3表达状态之间有良好的一致性。决策曲线表明,使用列线图来评估GPC3表达状态的总体净效益大于临床模型和放射组学模型。结论联合瘤内和瘤周区域放射组学特征和AFP的机器学习模型能在术前准确预测HCC患者的GPC3表达,帮助改善HCC患者个性化治疗策略,并为肝癌新辅助治疗研究提供新的工具。