关键词:
燃气轮机
热障涂层
孔隙率
数据挖掘
机器学习
摘要:
目的预测燃机透平叶片热障涂层孔隙率,加速热障涂层的研发及工艺优化,解决传统实验方法效率低、成本高的问题,为重型燃气轮机热障涂层研发及工业实际生产中的具体工艺参数调控提供一定指导。方法采用MATLAB图像二值化处理技术计算陶瓷层的孔隙率数据,训练机器学习模型,预测不同工艺参数下热障涂层陶瓷层的孔隙率,并通过实验验证测试涂层的硬度和孔隙率。结果GradientBoosting Regression模型能够实现对热障涂层孔隙率的准确预测,喷涂功率、送粉率和喷涂距离对孔隙率的影响较大。机器学习具有一定的外延性,模型的R值(Related Coefficient,R)由0.8344提高到0.9430,R2值(Square of Related Coefficient,R^(2))从0.6962提高到0.8892,而MAE的值(Mean Absolute Error,MAE)从1.3440降低到1.0394,RMSE值(Root Mean Squared Error,RMSE)由1.8810减少到1.7128。随孔隙率的降低,等离子喷涂8YSZ陶瓷涂层的硬度由3.98 GPa增加到5.54 GPa,弹性模量由62.36 GPa提高到84.30 GPa。该模型准确预测了不同工艺下的涂层孔隙率。结论喷涂功率、送粉率和喷涂距离决定了热障涂层的孔隙率,热障涂层的孔隙率与其硬度和弹性模量息息相关。本工作利用机器学习准确预测了不同工艺下的涂层孔隙率,证明机器学习算法在重型燃气轮机透平叶片热障涂层研发、工艺优化及生产中具有一定的应用前景。