关键词:
原发性肝癌
少数类过采样技术算法
机器学习
预测模型
摘要:
目的基于合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)算法和机器学习模型构建原发性肝癌术后的预后预测模型。方法选取美国国立癌症研究所的监测、流行病学及最终结果(Surveillance,Epidemiology,and End Results,SEER)数据库中4297例患者进行回顾性队列研究,通过独热编码和平均值插补法进行数据预处理,利用SMOTE算法解决数据类别不平衡问题,将临床变量纳入机器学习模型,基于决策树(decision tree,DT)、随机森林(random forest,RF)、梯度提升决策树(gradient boosting decision tree,GBDT)、极限梯度提升算法(eXtreme Gradient Boosting,XGBoost)方法构建预后预测模型(SMOTE+DT/RF/GBDT/XGBoost),通过比较多种模型的性能,筛选出最佳的预测模型。结果组合模型SMOTE+RF展示出最优的预测性能,受试者工作特征曲线(receiver operating characteristic curve,ROC)下的面积(area under the curve,AUC)、准确率和精确率均高于其他模型,分别为0.895、0.811、0.806。结论基于SMOTE+RF算法的原发性肝癌的预后预测模型可有效预测原发性肝癌患者的生存结局。